Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
polynomial.hpp
Go to the documentation of this file.
1// === AUDIT STATUS ===
2// internal: { status: Planned, auditors: [], commit: }
3// external_1: { status: not started, auditors: [], commit: }
4// external_2: { status: not started, auditors: [], commit: }
5// =====================
6
7#pragma once
17#include "evaluation_domain.hpp"
19#include <cstddef>
20#include <fstream>
21#include <ranges>
22namespace bb {
23
24/* Span class with a start index offset.
25 * We conceptually have a span like a_0 + a_1 x ... a_n x^n and then multiply by x^start_index.
26 * This allows more efficient representation than a fully defined span for 'islands' of zeroes. */
27template <typename Fr> struct PolynomialSpan {
34 size_t end_index() const { return start_index + size(); }
35 Fr* data() { return span.data(); }
36 size_t size() const { return span.size(); }
43 const Fr& operator[](size_t index) const
44 {
47 return span[index - start_index];
48 }
50 {
51 if (offset > span.size()) { // Return a null span
52 return { 0, span.subspan(span.size()) };
53 }
54 size_t new_length = std::min(length, span.size() - offset);
55 return { start_index + offset, span.subspan(offset, new_length) };
56 }
58};
59
75template <typename Fr> class Polynomial {
76 public:
77 using FF = Fr;
78 enum class DontZeroMemory { FLAG };
79
80 Polynomial(size_t size, size_t virtual_size, size_t start_index = 0);
81 // Intended just for plonk, where size == virtual_size always
83 : Polynomial(size, size) {};
84
85 // Constructor that does not initialize values, use with caution to save time.
95
96 Polynomial(Polynomial&& other) noexcept = default;
97
98 Polynomial(std::span<const Fr> coefficients, size_t virtual_size);
99
101 : Polynomial(coefficients, coefficients.size())
102 {}
103
108 {
109 return Polynomial(
110 /*actual size*/ virtual_size - NUM_ZERO_ROWS, virtual_size, /*shiftable offset*/ NUM_ZERO_ROWS);
111 }
115 static Polynomial shiftable(size_t size, size_t virtual_size)
116 {
117 return Polynomial(/*actual size*/ size - NUM_ZERO_ROWS, virtual_size, /*shiftable offset*/ NUM_ZERO_ROWS);
118 }
119 // Allow polynomials to be entirely reset/dormant
120 Polynomial() = default;
121
130
131 // move assignment
132 Polynomial& operator=(Polynomial&& other) noexcept = default;
134 ~Polynomial() = default;
135
139 Polynomial share() const;
140
142
147 bool is_zero() const
148 {
149 if (is_empty()) {
150 throw_or_abort("Checking is_zero on an empty Polynomial!");
151 }
152 for (size_t i = 0; i < size(); i++) {
153 if (coefficients_.data()[i] != 0) {
154 return false;
155 }
156 }
157 return true;
158 }
159
160 bool operator==(Polynomial const& rhs) const;
161
169 const Fr& get(size_t i, size_t virtual_padding = 0) const { return coefficients_.get(i, virtual_padding); };
170
171 bool is_empty() const { return coefficients_.size() == 0; }
172
179 Polynomial shifted() const;
180
185 Polynomial right_shifted(const size_t magnitude) const;
186
194 Polynomial reverse() const;
195
210 Fr evaluate_mle(std::span<const Fr> evaluation_points, bool shift = false) const;
211
214
226
227 Fr evaluate(const Fr& z, size_t target_size) const;
228 Fr evaluate(const Fr& z) const;
229
237
239
246
253
260
261 void multiply_chunk(const ThreadChunk& chunk, const Fr& scaling_factor);
262
268 void mask()
269 {
270 // Ensure there is sufficient space to add masking and also that we have memory allocated up to the virtual_size
271 BB_ASSERT_GTE(virtual_size(), NUM_MASKED_ROWS);
273
274 for (size_t i = virtual_size() - NUM_MASKED_ROWS; i < virtual_size(); ++i) {
276 }
277 }
278
279 std::size_t size() const { return coefficients_.size(); }
280 std::size_t virtual_size() const { return coefficients_.virtual_size(); }
281 void increase_virtual_size(const size_t size_in) { coefficients_.increase_virtual_size(size_in); };
282
283 Fr* data() { return coefficients_.data(); }
284 const Fr* data() const { return coefficients_.data(); }
285
294 Fr& at(size_t index) { return coefficients_[index]; }
295 const Fr& at(size_t index) const { return coefficients_[index]; }
296
297 const Fr& operator[](size_t i) { return get(i); }
298 const Fr& operator[](size_t i) const { return get(i); }
299
300 static Polynomial random(size_t size, size_t start_index = 0)
301 {
302 BB_BENCH_NAME("generate random polynomial");
303
305 }
306
307 static Polynomial random(size_t size, size_t virtual_size, size_t start_index)
308 {
311 size,
312 [&](size_t i) { p.coefficients_.data()[i] = Fr::random_element(); },
314 return p;
315 }
316
324
330 void shrink_end_index(const size_t new_end_index);
331
338 Polynomial full() const;
339
340 // The extents of the actual memory-backed polynomial region
341 size_t start_index() const { return coefficients_.start_; }
342 size_t end_index() const { return coefficients_.end_; }
343 bool is_shiftable() const { return start_index() == NUM_ZERO_ROWS; }
344
353 std::span<Fr> coeffs(size_t offset = 0) { return { data() + offset, data() + size() }; }
354 std::span<const Fr> coeffs(size_t offset = 0) const { return { data() + offset, data() + size() }; }
359 operator PolynomialSpan<Fr>() { return { start_index(), coeffs() }; }
360
365 operator PolynomialSpan<const Fr>() const { return { start_index(), coeffs() }; }
366
367 auto indices() const { return std::ranges::iota_view(start_index(), end_index()); }
368 auto indexed_values() { return zip_view(indices(), coeffs()); }
369 auto indexed_values() const { return zip_view(indices(), coeffs()); }
373 bool is_valid_set_index(size_t index) const { return (index >= start_index() && index < end_index()); }
377 void set_if_valid_index(size_t index, const Fr& value)
378 {
381 at(index) = value;
382 }
383 }
384
397 template <typename T> void copy_vector(const std::vector<T>& vec)
398 {
399 BB_ASSERT_LTE(vec.size(), end_index());
400 BB_ASSERT_LTE(vec.size() - start_index(), size());
401 for (size_t i = start_index(); i < vec.size(); i++) {
402 at(i) = vec[i];
403 }
404 }
405
406 /*
407 * @brief For quick and dirty comparisons. ONLY for development and log use!
408 */
410 {
411 Fr result{ 0 };
412 for (size_t i = start_index(); i < end_index(); i++) {
413 result += (*this)[i] * i;
414 }
415 return result;
416 }
417
418 private:
419 // allocate a fresh memory pointer for backing memory
420 // DOES NOT initialize memory
421 void allocate_backing_memory(size_t size, size_t virtual_size, size_t start_index);
422
423 // safety check for in place operations
424 bool in_place_operation_viable(size_t domain_size) { return (size() >= domain_size); }
425
426 // The underlying memory, with a bespoke (but minimal) shared array struct that fits our needs.
427 // Namely, it supports polynomial shifts and 'virtual' zeroes past a size up until a 'virtual' size.
429};
430// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays)
431template <typename Fr> std::shared_ptr<Fr[]> _allocate_aligned_memory(size_t n_elements)
432{
433 // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays)
434 return std::make_shared<Fr[]>(n_elements);
435}
436
441template <typename Fr_>
443 const SharedShiftedVirtualZeroesArray<Fr_>& coefficients,
444 bool shift)
445{
446 constexpr bool is_native = IsAnyOf<Fr_, bb::fr, grumpkin::fr>;
447 // shift ==> native
448 BB_ASSERT(!shift || is_native);
449
450 if (coefficients.size() == 0) {
451 return Fr_(0);
452 }
453
454 const size_t n = evaluation_points.size();
455 const size_t dim = numeric::get_msb(coefficients.end_ - 1) + 1; // Round up to next power of 2
456
457 // To simplify handling of edge cases, we assume that the index space is always a power of 2
458 BB_ASSERT_EQ(coefficients.virtual_size(), static_cast<size_t>(1 << n));
459
460 // We first fold over dim rounds l = 0,...,dim-1.
461 // in round l, n_l is the size of the buffer containing the Polynomial partially evaluated
462 // at u₀,..., u_l.
463 // In round 0, this is half the size of dim
464 size_t n_l = 1 << (dim - 1);
465
466 // temporary buffer of half the size of the Polynomial
467 // TODO(https://github.com/AztecProtocol/barretenberg/issues/1096): Make this a Polynomial with
468 // DontZeroMemory::FLAG
469 auto tmp_ptr = _allocate_aligned_memory<Fr_>(sizeof(Fr_) * n_l);
470 auto tmp = tmp_ptr.get();
471
472 size_t offset = 0;
473 if constexpr (is_native) {
474 if (shift) {
475 BB_ASSERT_EQ(coefficients.get(0), Fr_::zero());
476 offset++;
477 }
478 }
479
480 Fr_ u_l = evaluation_points[0];
481
482 // Note below: i * 2 + 1 + offset might equal virtual_size. This used to subtlely be handled by extra capacity
483 // padding (and there used to be no assert time checks, which this constant helps with).
484 const size_t ALLOW_ONE_PAST_READ = 1;
485 for (size_t i = 0; i < n_l; ++i) {
486 // curr[i] = (Fr(1) - u_l) * prev[i * 2] + u_l * prev[(i * 2) + 1];
487 tmp[i] = coefficients.get(i * 2 + offset) +
488 u_l * (coefficients.get(i * 2 + 1 + offset, ALLOW_ONE_PAST_READ) - coefficients.get(i * 2 + offset));
489 }
490
491 // partially evaluate the dim-1 remaining points
492 for (size_t l = 1; l < dim; ++l) {
493 n_l = 1 << (dim - l - 1);
494 u_l = evaluation_points[l];
495 for (size_t i = 0; i < n_l; ++i) {
496 tmp[i] = tmp[i * 2] + u_l * (tmp[(i * 2) + 1] - tmp[i * 2]);
497 }
498 }
499 auto result = tmp[0];
500
501 // We handle the "trivial" dimensions which are full of zeros.
502 for (size_t i = dim; i < n; i++) {
503 result *= (Fr_(1) - evaluation_points[i]);
504 }
505
506 return result;
507}
508
512template <typename Fr_>
514 const SharedShiftedVirtualZeroesArray<Fr_>& coefficients)
515{
516 return _evaluate_mle(evaluation_points, coefficients, false);
517}
518
519template <typename Fr> inline std::ostream& operator<<(std::ostream& os, const Polynomial<Fr>& p)
520{
521 if (p.size() == 0) {
522 return os << "[]";
523 }
524 if (p.size() == 1) {
525 return os << "[ data " << p[0] << "]";
526 }
527 return os << "[ data\n"
528 << " " << p[0] << ",\n"
529 << " " << p[1] << ",\n"
530 << " ... ,\n"
531 << " " << p[p.size() - 2] << ",\n"
532 << " " << p[p.size() - 1] << ",\n"
533 << "]";
534}
535
536template <typename Poly, typename... Polys> auto zip_polys(Poly&& poly, Polys&&... polys)
537{
538 // Ensure all polys have the same start_index() and end_index() as poly
539 // Use fold expression to check all polys exactly match our size
540 // Wrap BB_ASSERT_EQ_RELEASE in a lambda to make it usable in a fold expression
541 auto check_indices = [&](const auto& other) {
542 BB_ASSERT_EQ(poly.start_index(), other.start_index());
543 BB_ASSERT_EQ(poly.end_index(), other.end_index());
544 };
545 // Apply the lambda to each poly in the parameter pack
546 (check_indices(polys), ...);
547 return zip_view(poly.indices(), poly.coeffs(), polys.coeffs()...);
548}
549} // namespace bb
#define BB_ASSERT(expression,...)
Definition assert.hpp:70
#define BB_ASSERT_GTE(left, right,...)
Definition assert.hpp:128
#define BB_ASSERT_NO_WASM(expression,...)
Definition assert.hpp:180
#define BB_ASSERT_DEBUG(expression,...)
Definition assert.hpp:55
#define BB_ASSERT_EQ(actual, expected,...)
Definition assert.hpp:83
#define BB_ASSERT_LTE(left, right,...)
Definition assert.hpp:158
#define BB_BENCH_NAME(name)
Definition bb_bench.hpp:219
Structured polynomial class that represents the coefficients 'a' of a_0 + a_1 x .....
Polynomial(size_t size, size_t virtual_size, DontZeroMemory flag)
Polynomial & operator=(Polynomial &&other) noexcept=default
Polynomial shifted() const
Returns a Polynomial the left-shift of self.
size_t start_index() const
Polynomial(Polynomial &&other) noexcept=default
bool is_empty() const
static Polynomial random(size_t size, size_t start_index=0)
Polynomial()=default
std::size_t virtual_size() const
Fr evaluate(const Fr &z, size_t target_size) const
bool is_shiftable() const
SharedShiftedVirtualZeroesArray< Fr > coefficients_
Polynomial(const Polynomial &other)
void increase_virtual_size(const size_t size_in)
std::span< Fr > coeffs(size_t offset=0)
Strictly iterates the defined region of the polynomial. We keep this explicit, instead of having an i...
void copy_vector(const std::vector< T > &vec)
Copy over values from a vector that is of a convertible type.
Polynomial & operator*=(const Fr &scaling_factor)
sets this = p(X) to s⋅p(X)
auto indices() const
auto indexed_values() const
void add_scaled(PolynomialSpan< const Fr > other, const Fr &scaling_factor)
adds the polynomial q(X) 'other', multiplied by a scaling factor.
bool in_place_operation_viable(size_t domain_size)
Polynomial & operator=(const Polynomial &other)
void add_scaled_chunk(const ThreadChunk &chunk, PolynomialSpan< const Fr > other, const Fr &scaling_factor)
static Polynomial shiftable(size_t size, size_t virtual_size)
Utility to create a shiftable polynomial of given size and virtual size.
void mask()
Add random values to the coefficients of a polynomial. In practice, this is used for ensuring the com...
Fr evaluate_mle(std::span< const Fr > evaluation_points, bool shift=false) const
evaluate multi-linear extension p(X_0,…,X_{n-1}) = \sum_i a_i*L_i(X_0,…,X_{n-1}) at u = (u_0,...
Polynomial(const Polynomial &other, size_t target_size)
size_t end_index() const
Fr debug_hash() const
const Fr & get(size_t i, size_t virtual_padding=0) const
Retrieves the value at the specified index.
Polynomial(size_t size)
Polynomial & operator-=(PolynomialSpan< const Fr > other)
subtracts the polynomial q(X) 'other'.
Polynomial share() const
static Polynomial random(size_t size, size_t virtual_size, size_t start_index)
Polynomial reverse() const
Returns the polynomial equal to the reverse of self.
Polynomial right_shifted(const size_t magnitude) const
Returns a Polynomial equal to the right-shift-by-magnitude of self.
Fr compute_barycentric_evaluation(const Fr &z, const EvaluationDomain< Fr > &domain)
Fr & at(size_t index)
Our mutable accessor, unlike operator[]. We abuse precedent a bit to differentiate at() and operator[...
bool operator==(Polynomial const &rhs) const
void shrink_end_index(const size_t new_end_index)
The end_index of the polynomial is decreased without any memory de-allocation. This is a very fast wa...
Polynomial & operator+=(PolynomialSpan< const Fr > other)
adds the polynomial q(X) 'other'.
const Fr & at(size_t index) const
~Polynomial()=default
static Polynomial shiftable(size_t virtual_size)
Utility to create a shiftable polynomial of given virtual size.
const Fr * data() const
Polynomial(size_t size, DontZeroMemory flag)
static Polynomial create_non_parallel_zero_init(size_t size, size_t virtual_size)
A factory to construct a polynomial where parallel initialization is not possible (e....
void factor_roots(const Fr &root)
Divides p(X) by (X-r) in-place. Assumes that p(rⱼ)=0 for all j.
void allocate_backing_memory(size_t size, size_t virtual_size, size_t start_index)
void set_if_valid_index(size_t index, const Fr &value)
Like setting with at(), but allows zeroes to result in no set.
std::size_t size() const
bool is_zero() const
Check whether or not a polynomial is identically zero.
std::span< const Fr > coeffs(size_t offset=0) const
bool is_valid_set_index(size_t index) const
Is this index valid for a set? i.e. calling poly.at(index) = value.
const Fr & operator[](size_t i) const
void multiply_chunk(const ThreadChunk &chunk, const Fr &scaling_factor)
Polynomial full() const
Copys the polynomial, but with the whole address space usable. The value of the polynomial remains th...
auto indexed_values()
const Fr & operator[](size_t i)
Polynomial(std::span< const Fr > coefficients)
uint8_t const size_t length
Definition data_store.hpp:9
ssize_t offset
Definition engine.cpp:36
std::ostream & operator<<(std::ostream &os, uint256_t const &a)
Definition uint256.hpp:254
constexpr T get_msb(const T in)
Definition get_msb.hpp:47
void factor_roots(std::span< Fr > polynomial, const Fr &root)
Divides p(X) by (X-r) in-place.
constexpr size_t ALWAYS_MULTITHREAD
Definition thread.hpp:155
Entry point for Barretenberg command-line interface.
Definition api.hpp:5
std::shared_ptr< Fr[]> _allocate_aligned_memory(size_t n_elements)
auto zip_polys(Poly &&poly, Polys &&... polys)
void parallel_for_heuristic(size_t num_points, const std::function< void(size_t, size_t, size_t)> &func, size_t heuristic_cost)
Split a loop into several loops running in parallel based on operations in 1 iteration.
Definition thread.cpp:171
Fr_ _evaluate_mle(std::span< const Fr_ > evaluation_points, const SharedShiftedVirtualZeroesArray< Fr_ > &coefficients, bool shift)
Internal implementation to support both native and stdlib circuit field types.
Fr_ generic_evaluate_mle(std::span< const Fr_ > evaluation_points, const SharedShiftedVirtualZeroesArray< Fr_ > &coefficients)
Static exposed implementation to support both native and stdlib circuit field types.
constexpr decltype(auto) get(::tuplet::tuple< T... > &&t) noexcept
Definition tuple.hpp:13
Curve::ScalarField Fr
A shared pointer array template that represents a virtual array filled with zeros up to virtual_size_...
const T & get(size_t index, size_t virtual_padding=0) const
Retrieves the value at the specified index, or 'zero'. Optimizes for e.g. 256-bit fields by storing a...
size_t end_
The ending index of the memory-backed range.
PolynomialSpan subspan(size_t offset, size_t length)
size_t size() const
Fr & operator[](size_t index)
std::span< Fr > span
size_t end_index() const
PolynomialSpan(size_t start_index, std::span< Fr > span)
const Fr & operator[](size_t index) const
static field random_element(numeric::RNG *engine=nullptr) noexcept
BB_INLINE constexpr bool is_zero() const noexcept
void throw_or_abort(std::string const &err)